skip to main content


Search for: All records

Creators/Authors contains: "Talley, K.G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  2. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.[1] mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.[2] mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.[3] report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less